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Bivariate Normal Thickness-Density Structure in
Real Near-Planar Stochastic Fiber Networks
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We present the analysis of experimental data that supports the recently presented
hypothesis that the relationship between local areal density and local thickness
in planar stochastic fiber networks may be described by the bivariate normal
distribution. Measurements of the local averages of areal density and thickness
have been made on experimental fiber networks with differing degrees of struc-
tural uniformity. The experimentally determined variance of local density at the
1 mm scale is in excellent agreement with that calculated from the theory. Also,
the use of the bivariate normal distribution to describe the relationship between
local areal density and local thickness measured in complete sampling schemes
is appropriate for both near-random and clumped networks.

KEY WORDS: Stochastic fiber networks; density; porosity; clumping; net-
work geometry; paper.

1. INTRODUCTION

The structure of near-planar stochastic fiber networks and their planar pro-
jections has been the subject of many studies, a comprehensive review of
which is given by Deng and Dodson.(1) Much of this work has considered
the special case of planar random fiber networks. Analytic expressions for
the distribution of local averages of areal density, in networks with fiber
centres distributed according to a two dimensional Poisson process and
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uniformly distributed fiber axis orientations, were derived by Dodson.(2)

Miles(3) obtained the results that the distance between fiber crossings in
such networks is described by the negative exponential distribution and the
mean number of sides per polygon is four; this result was used by Corte
and Lloyd(4) to derive the probability density function for equivalent pore
radii in random fiber networks. Typical commercial examples of near-
planar stochastic fiber networks such as paper, nonwoven fabrics, glass
fiber filter mats, etc. have thickness of the order of one tenth or less of a
mean fiber length; so though we deal with a 3-dimensional structure, many
features of importance are accessible though projections onto a plane.

Real fiber networks have nonrandom structures, largely as a conse-
quence of interactions between fibers in the suspensions from which the
network is formed. The resulting near-planar structures can be studied by
a complete sampling scheme of uniform square zones and this gives rise for
each choice of zone size to a bivariate distribution of the local averages in
zones for areal density and thickness, which in the sequel we shall represent
by the random variables ;� and z~ , respectively. In the random case fibers are
by definition placed independently; then the parameters of the bivariate
distribution are known analytically for arbitrary rectangular fibers(2) and
so provide reference cases for real data. The alternatives to random are on
the one hand a ``clumped'' structure where fibers have aggregated together
during the forming process as if mutually attracted somewhat, and on the
other hand a ``smoothed'' structure wherein fibers have acted as if mutually
repelled somewhat. In a density bitmap representation of the structure a
clumped case has more evident contrast than a smoothed case; this is
because the variance of local averages is greater than in the random case
when clumping occurs and less than in the random case when smoothing
occurs.(1, 4) We consider the variability of the local average values of given
properties since these are observable and dependent on the scale of inspec-
tion or zone size; typically, the variance of local average density and thick-
ness is a monotonically decreasing function of zone size.

The probability density function for equivalent pore radii in clumped
or flocculated networks was derived by Dodson and Sampson(5, 6) extend-
ing the result for Poisson processes obtained by Corte and Lloyd.(4) The
degree of clumping is important in commercial fiber networks as it affects,
for example, the deformation of a network under strain(7, 8) and the flow of
fluids through the network.(9) The properties of random fiber networks, as
discussed above, are widely used to provide reference structures against
which the structural characteristics of real structures may be compared,
and their differences quantified.

Recently, we presented a model for the distribution of local porosity
in two and three dimensional fiber networks;(10) if local areal density, ;� and
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local thickness, z~ are distributed according to the bivariate normal distribu-
tion then the variance of local porosity, Varx(=~ ) is given by,

Varx(=~ )=
1
\2 \;�

z� +
2

\Varx(;� )
;� 2

&
2 Covx(;� , z~ )

;� z�
+

Varx(z~ )
z� 2 + (1)

where ;� is the average network areal density, z� is the average network
thickness, \ is the fiber density and CVx(;� ) and CVx(z~ ) are the coefficients
of variation at a scale of inspection x of areal density and thickness respec-
tively. Now, the local and mean porosities are defined by Eqs. (2) and (3)
respectively:
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and for =~ r=� we have the approximate expression
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A limited set of experimental data from the literature(11) was used in
ref. 10 to test the assumption that the relationship between the local thick-
ness and local areal density of the network could be described by a
bivariate normal distribution and hence allow, through estimation of the
variance of local porosity, estimation of the variance of local density.
Agreement was satisfactory, but the original data did not include values for
the covariance of areal density and thickness and hence only Eq. (4) could
be tested.

Here we discuss the use of the bivariate normal distribution to describe
the relationship between the local averages of thickness and areal density.
Data is presented for a range of experimental near-planar fiber networks
with differing degrees of clumping; the data is compared with the model
presented in ref. 10 via expressions following directly from Eqs. (1) and (4)
and developed in the sequel.

2. VARIANCE OF DENSITY

Consider the coverage of points by fibers. The thickness of the net-
work at a given point is determined by the number of fibers covering that
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point, their thickness and their vertical separation. For a given zone, it is
the local averages of these values which determines the local average thick-
ness. The relationships between the coverage of points, the distribution of
local averages of areal density of zones and their dependence on fiber
morphologies are well established.(1, 2)

From the Central Limit Theorem, we expect the distributions of the
local averages of areal density and thickness to be Normal and this is con-
firmed by experimental measurements made on paper.(1, 11) Denoting the
local and global averages of variables by placing a tilde t and a bar &

respectively over the variables, we note, that density, porosity, thickness
and areal density are related, by definition, by the expressions:

c~ =(1&=~ ) \ and ;� =c~ z~ (5)

c� =(1&=� ) \ and ;� =c� z� (6)

where c~ and c� are the local and global averages of density respectively.
Thus, as density is the complement of porosity, it follows directly from
Eq. (1) that at a given inspection zone size x, the variance of local density,
Varx(c~ ) is given by \2 Varx(=) using (5) directly, or equivalently

Varx(c~ )=\;�
z� +
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Following ref. 10, if c~ rc� , then
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and substitution of Eqs. (8) and (9) in (7) yields the approximate expression

Varx(c~ )r\;�
z� +

2

|CVx(;� )2&CVx(z~ )2|=\2 Varx(=~ ) (10)

in agreement with the case for (4).
The use of the bivariate normal distribution to describe the relationship

between the local averages of thickness and areal density is seemingly
appropriate as these are Normally distributed and proportional to each
other; the constant of proportionality being the local network density,
which we expect to be distributed according to some random process.
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3. EXPERIMENTAL

Samples of stochastic fiber networks were formed using natural
cellulose fibers obtained from different woods treated by two different pro-
cesses, thermo-mechanical (TMP) and chemical (CS); samples were made
also from a 50:50 blend of the two types. Samples were formed by filtration
of a suspension over a standard woven wire fabric in a British Standard
Handsheet Former; this equipment conforms to international standards for
forming paper in the laboratory and is described in ref. 12. The fibers were
chosen for their different morphologies and these are summarised in Table I.
The linear density of a fiber is defined as its expected mass per unit length,
so at a given mean areal density, networks formed from the CS fibers will
have more constituent fibers per unit area than those formed from the
TMP fibers.

The degree of clumping was altered by forming at different mass con-
centrations in the suspension and by allowing time for the fibers in suspen-
sion partially to sediment before filtration. Both mechanisms allowed
increased potential for fiber interaction in suspension and hence increased
nonuniformity in the formed network. It should be noted that one set of
sheets formed from each fiber type and the blend were formed using the
mass concentrations and sedimentation times described in ref. 12; these
conditions are known to produce networks with a distribution of mass den-
sity at the 1 mm scale close to that of a random fiber network formed from
the same constituent fibers.(1) The degree of fiber clumping in suspension,
induced through the range of experimental conditions, therefore produced
manifestly non-random networks with a broader distribution of local areal
densities than their corresponding random networks.

For each sample, the local averages of thickness and areal density of
1 mm square zones were measured within a 50 mm_50 mm area and the
samples marked to allow zone by zone comparison. Thickness was
measured using a laser triangulation device(13) and areal density using a
calibrated ;-radiation device. Full experimental details have been presented
in a recent PhD thesis(14) and will be reported fully elsewhere.

Table I. Properties of Fibers Used to Prepare Sheets

Mean width, |� Mean length, * Linear density, $
+m mm g m&1_104

TMP 36.5 1.98 2.22
CS 38.7 2.41 1.16
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Fig. 1. In-plane distributions of areal density, thickness and density. Example shown is for
a network formed from CS fibers with a mean areal density of 45 g m&2. Each image
represents the same 50 mm_50 mm zone.

4. RESULTS

Knowledge of the local averages of areal density and thickness for
each 1 mm square zone in a given sample allowed direct determination of
the mean and variance of each property and their covariance for each
sample. Also, the local average density of each zone could be calculated
directly. Sample density plots for local averages of areal density, thickness
and density are shown in Fig. 1; the data shown is for a 45 g m&2 network
formed from CS fibers with an intermediate level of structural nonunifor-
mity. A plot of the local averages of areal density and thickness for the
same sample are shown in Fig. 2; the coefficient of determination for a
linear regression on these data was 0.763 and this is typical of all the

Fig. 2. Example of relationship between local averages of areal density and thickness. The
bivariate normal distribution is justified by a linear regression between local thickness and
local areal density.
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samples tested. The use of a bivariate normal distribution in our model is
justified by this good linear regression found between local thickness and
local areal density.

The variance of local density obtained using Eq. (7) is plotted against
the experimentally determined value in Fig. 3; the broken line has unit
gradient. Regression analysis on the data yields a slope of 0.92, an intercept
of 0.98 and a coefficient of determination of 0.974; the regression is repre-
sented by the dotted line in Fig. 3. The excellent agreement between the
two sets of data suggests strongly that the relationship between local areal
density and thickness is well described by the bivariate normal distribution.

The same experimental data is presented in Fig. 4, though the values
on the ordinate are calculated from the approximate expression given by
Eq. (10); again, the broken line has unit gradient. The dotted line
represents a linear regression on the data; the gradient is approximately
one, the intercept on the ordinate is &5_10&4 g2 cm&6 and the coefficient
of determination is 0.727. The underestimation of the variance of local den-
sity using Eq. (10) results from the assumption that c~ rc� and is therefore
expected. Remarkably, the linear regression between local thickness and
local areal density persists even to clumped cases of very much higher
variances than for a Poisson process. This means that the bivariate normal
model applies well over a broad range of real structures, not only to the
random network case.

Fig. 3. Variance of local density as given by Eq. (7) plotted against that determined
experimentally. Key: Diamonds��TMP; squares��CS; stars��50:50 blend. The broken line
has unit gradient; the dotted line represents a linear regression on the data.
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Fig. 4. Variance of local density as given by Eq. (10) plotted against that determined
experimentally. Key: Diamonds��TMP; squares��CS; stars��50:50 blend. The broken line
has unit gradient; the dotted line represents a linear regression on the data.

5. CONCLUSIONS

Our results suggest that the relationship between the local areal den-
sity and local thickness in these near-planar stochastic fiber networks
indicates a linear regression that is well described by the bivariate normal
distribution. Such a property would be expected for any Poisson process of
extended objects, but we have shown that it persists in the important non-
random case of clumped structures.

If local areal density and local thickness are measured independently
in a structure and their covariance is unknown, then we provide an
approximate expression for the variance of local density.
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NOMENCLATURE

;� Local areal density g m&2

;� Mean areal density g m&2
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c~ Local mass density g cm&3

c� Mean mass density g cm&3

$ Fibre linear density g m&1

=~ Local porosity [ ]
=� Mean porosity [ ]
* Fibre length m
\ Fibre density g m&3

| Fibre width m
x Zone size m
z~ Local network thickness m
z� Mean network thickness m
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